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Abstract. Understanding human trust in machine partners has become an imperative following the4

widespread use of intelligent machines in a variety of applications and contexts. The aim of this paper is5

to study experimentally whether human-beings trust a social robot - i.e. a human-like robot that embod-6

ies emotional states, empathy and non-verbal communication - differently than other types of agents.7

To do so, we adapt the well-known economic trust-game proposed by Charness and Dufwenberg (2006)8

to assess whether receiving a promise from a robot increases human-trust in it. We find that receiving9

a promise from the robot increases the trust of the human in it, but only for individuals who perceived10

the robot very similar to a human-being. Importantly, we could replicate a similar pattern in choices11

when we replaced the humanoid counterpart with a real human but not when it was replaced by a12

computer-box. We additionally find that human participants’ psychophysiological reaction is stronger13

when confronted with the humanoid.14

Introduction15

Trust is considered as a social glue that connects people and promotes collective goals. It is normally16

defined as the “intention to accept vulnerability based on the positive expectations or beliefs regarding17

the intentions or behaviour of other people in general” [1]. As a consequence, behavioral science has18

always been interested in trust, and more particularly in its influence on decision making [2, 3]. In19

parallel, trust also is relevant if we want to build social artificial agents that interact alongside with20
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people (e.g. robo-advisors, co-working robots, assistive robots, etc.) and take responsible roles in our21

society [4, 5]. A lesson learned from previous research and inter-disciplinary evidence (e.g. economics,22

neuroeconomics, psychology) is that (general) trust is deeply rooted in social experiences, being more23

a matter of culture than genetics [1], and highly affected by the emotional states of the individuals24

[6, 7, 8]. Indeed, emotions have been proven to play a fundamental role in the decision making process25

in general[9], as confirmed among other neuroscientists, by Damasio and colleagues in their studies26

[10, 11, 12, 13].27

This stream of research thus suggests that trust and emotions are highly intertwined in the decision-28

making process in human-human interactions [14, 15, 16, 17], and may act as reasonable drivers in29

human-robot interactions as well [18]. It has been shown, for example, that not binding communic-30

ations (i.e. cheap talk) is beneficial not only among humans but also to achieve higher cooperation31

when interacting with a machine (e.g [19]). In particular, a simple conversation with a robot changes32

individual behaviour towards the artificial agent [4, 20]. Very similar behavioural responses can be ob-33

served in children [4]. More in general, increasing the anthropomorphic features and the human social34

skills of a technology (e.g. by adding a name or a human voice to an autonomous vehicle) increases the35

individual willingness to accept and trust the technology itself (e.g. [21, 22, 13]).36

Nonetheless, while the importance of emotions in driving the choice of a human to trust another37

human has been highly studied, less evidence is available when the decision to trust involves the in-38

teraction between artificial agents and humans ([23], [7, 21]). Moreover, we know that trust is highly39

culturally based, and that the appearance of the robot (especially its human-likeness, see [24]) affects40

the emotions perceived by its interlocutors. Therefore, studies on human-robot interactions and trust41

should always be repeated with different robot players having different aesthetics.42

On that premise, the present study investigates how trust in a social robot is affected by its human43

likeness (both in terms of aesthetics and speech content), while taking into account the emotional states44

of the players during the interaction through physiological signal processing. The objectives are two-45

fold. On the one side, we can gain insights on how human-likeness interacts with emotions to instill46

people’s trust in artificial agents, comparing it with that in human parterns so as to asses the differences47

(if any).1 On the other side, we can gain a better understanding on how to design machines - both in48

terms of appearance and (e.g. communication) behaviour - in a way that help facilitate a fruitful inter-49

1Integral emotions are emotions arising from the choice at hand and strongly shapes, and possibly bias, decision making. For
example, a person who feels anxious about the potential outcome of a risky choice may choose the safer option.[9] On the other
hand, incidental emotions are by definition unrelated to the outcomes under considerations although may still cause alterations in
the choice process.
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action with humans. To this end, we present a series of experimental treatments based on a modified50

version of a well-known game used in behavioral economics to study trust among humans: the trust51

game as proposed by Berg and colleagues and adapted by Charness and Dufwenberg[25, 26], In this52

game, the outcome of the interaction depends on whether the first mover (the trustor) decides or not53

to trust the second mover (the trustee). If the first mover decides to trust the counterpart by remaining54

in the game, the second mover has to decide between a choice that does not benefit the trustor but it is55

more benificial for himself (i.e. provides him with the highest payoff) and a choice that benefits the trus-56

tor but provides him with a lower payoff. If the first mover decides not trust, both players get a lower57

outside payoff. In other words, there is a conflict of interest between the two players when remaing in58

the game, but both would be better off if a mutual relationship is established (i.e. the first player remains59

in the game). A peculiar characteristic of this game is that prior to the trustor’s choice of remaining in60

the game, the trustee is given the opportunity to send him a non-binding (i.e. cheap-talk) message. We61

rely on this game as it has been specifically conceived to assess whether receiving a message containing62

a promise from the opponent increases individual trust in him (her).63

In our experiment the role of the trustor is always played by a (human) experimental subject while64

the role of the trustee is played by three different types of players: a humanoid robot with high human-65

likeness (FACE, Fig. 1), a human counter-part (Human, Fig. 1) or a computer-box machine (Computer-66

Box, Fig. 1). In all cases, we compare the trustors’ choices when the trustee sends a generic message67

- not including any type of promise (i.e. an ‘empty’ message) - with the trustors’ choices when the68

trustee sends instead a message containing a promise. Specifically, to generate the messages from the69

robot, we rely on real sentences that occurred between human participants in the experiment of Char-70

ness and Dufwenberg[25], and were therein classified either as empty or promising. Finally, to monitor71

the emotional states of our participants, in all sessions we analyzed two of the most widely used auto-72

matic nervous system correlates, such as pulse rate variability and electrodermal activity, which are well73

known to contain information about affective state of a subject.[27]74

1 Experimental design75

In the experiment we use the trust game proposed by Charness and Dufwenberg [25], which is depicted76

in Figure (2). There are two players: A (the trustor) and B (the trustee). Player-A chooses between two77

options, In and Out. If Player-A chooses Out, the game ends and each player wins 5 Euro. If Player-A78

chooses In, then Player-B has to choose between two options, Roll or Don’t Roll. If he chooses Don’t Roll,79
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Figure 1: THREE TYPES OF PLAYER-B
FACE Human Computer-box

then he wins 14 Euro while Player-A earns 0. If he chooses Roll, Player-A wins 0 Euro with probability80

1/6 and 12 Euro with probability 5/6, while Player-B wins 10 Euro in any case.81

From an economic point of view, for Player-B it is better if Player-A chooses In, while for Player-A82

choosing In is convenient only if B chooses Roll. The main charateristic of this game is that when Player-83

A wins zero Euro, it is not possible for Player-A to infer with certainty whether Player-B has chosen84

either Roll or Don’t Roll. This game thus reflects (as many other experiments in economics) real-world85

situations where it is not possible to perfectly observe the behaviour of a partner that can be delegated86

to make relevant payoff decisions. In this experiment, the type of Player-B (i.e., the trustee) changes87

across treatments, while Player-A is always a human participant. In particular, the role of Player-B is88

played by either a humanoid (FACE), a computer-box or a human. Regarding the message Player-B89

sends to Player-A, it can be of two kinds:: a message containing a promise to roll the dice (promising),90

and a generic message (empty). In particular, we select messages from the original study of Charness91

and Dufwenberg[25] (as available on their Supplementary material in the online Appendix). To further92

check whether the length of messages affects individual choices, for each type of message (i.e. promising93

and empty), we specifically select two short (less than 10 seconds) and two long (more than 10 seconds)94

messages. Thus, we have a 3x2x2 design. Treatments are illustrated in Table (1), and an English trans-95

lation of the instructions is available at the end of the paper. In FACE treatments, the role of Player-B96

is played by FACE, i.e. a hyper-realistic humanoid robot with the aesthetic of a woman (see Figure 1)97
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Figure 2: THE GAME

Table 1: TREATMENTS
This table classifies the number of observations collected in our study according to the type of counterpart the human participants
confront with (i.e. Computer-box, Human, and Humanoid) and the type of sentence they have to listen to (i.e. cointaing a promise
or not, either a short or long sentence).

Empty Promising Grand TotalShort Long Total Short Long Total
Computer- box 12 19 31 20 13 33 64

Human 16 10 26 14 8 22 48
Humanoid (FACE) 15 10 25 16 9 25 50

Total 43 39 82 50 30 80 162

that due to its perceptive, reasoning and expressive capabilities, constitutes a sophisticated observation98

platform to study what happens when human and machine establish empathic links ([28]). However,99

although it has been shown that computer agents can use the expression of emotion to influence human100

perceptions of trustworthiness, we do not rely on FACE’s ability of showing emotional information101

through facial expressions in order to isolate only the effect of human-likeness and promise in influen-102

cing the emotional state of our partecipants, as well as their choices. In the Computer-Box treatments,103

the role of Player-B is played by a light-emitting audio-box reproducing the same audio-sentences and104

taking decisions in the same way as in FACE . Importantly, both in FACE and Computer-Box treatments,105

the artificial agent has its own cognitive system with its perception analysis and architecture, i.e. the106
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so-called Social Emotional Artificial Intelligence (SEAI).2 This framework allows the social scenario to107

be acquired and to influence the parameters which correspond to the ‘mood’ of the artificial agent (see108

[29]). Specifically, in this experiment, due to SEAI, the artificial agent benefits from its own artificial109

emotions for choosing whether to Roll or Don’t Roll (see the Appendix for more information about how110

the robot takes a decision). More importantly, the participants in this experiment are aware that the111

artificial agent (like the human counterpart) is able to take its decision autonomously, i.e. not randomly112

but following its own behavioural rules, and therefore the results of game interaction is not determined113

by chance only.114

In the Human treatments, the role of Player-B is played by the same professional actress who gave115

her voice for recording FACE/Computer-Box’ audios. The actress is free to autonomously decide her116

choices in the game, i.e. Roll or Don’t Roll, being paid accordingly, but she has no room to decide which117

sentences to state that have to be exactly the same ones, and in the same identical order, as the ones118

pronounced in FACE and Computer-Box. Moreover, the actress is instructed to avoid any facial expres-119

sions during the interaction with a participant, and has to wear FACE’s hairs and dresses. Similarly, she120

has to follow the same experimental procedure as in the Computer-Box and FACE treatments (see the121

Appendix for details).122

To investigate the psychophysiological state of Player-A while taking the decision, in all sessions123

the participants wear a wearable device on their left wrist (a sensorized bracelet called ‘Empatica’3) for124

the real-time collection of physiological data, such as PRV and EDA. XXX The processing of these two125

signals allows us to characterize the ANS activity of Player-A and infer about his (her) psychophysiolo-126

gical states. In particular, two indexes were computed to quantify the sympathetic nervous system127

activity (i.e. the EDAsymp index) and the sympthovagal balance (i.e. EDAHFnu index). In Appendix128

we describe in details how we computed these two indices.129

At the end of the experiment, participants has to fill in a questionnaire asking information about130

how they perceive Player-B, as well as information about their individual characteristics, such as age,131

gender, and field of studies. In particular, as Nitsch and Glassen,[20] participants has to rate on 7-132

likert scale how much they perceive Player-B as a human (i.e. the human-likeness, where 0 means non-133

human at all and 7 means totally human) and how much they perceive Player-B as a machine (i.e. the134

machine-likeness) . We also ask participants to rate how much they believe their behaviour has affected135

Player-B’s choiceand to make a guess about Player-B’s choice (Roll/Don’t roll). Finally, we elicite their136

2The only exception being the actuation control (i.e. commands to induce movement and facial expressions), which is obvi-
ously different.

3https://www.empatica.com/
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Table 2: TYPE OF MESSAGES
TYPES # PHRASES # SECONDS PHRASES

Empty 2 <10
- ’Good luck!’
- ‘Please choose IN, so we both earn more money.’

2 >10

- ‘If you stay IN, the chances of the die coming up other
than 1 are 5 in 6 – pretty good. Otherwise, should you
choose OUT we’d both be stuck at 5 Euro.’
- ‘Good luck on your decision. Choose whatever. If you
choose “out”, you get only 5 Euro more. If you choose
“In” you can get 12 Euro instead of only 5 Euro. 7 Euro
more is a lot of money!’

Promising 2 <10
- ‘I will roll the dice’
- ‘Choose In and I will Roll. You have my word.’

2 >10

- ‘Choose in, I will roll dice, you are 5/6 likely to get
2,3,4,5, or 6 and win 12 Euro. This way both of us will
win something.’
- ‘Choose in and I will roll. That way, we’ll both get
extra money.’

This table reports 8 sentences that occured between human participants in the study of Charness and Dufwenberg (2006) and
were selected in our study. 4 out of 8 sentences were classified as short (i.e. they last less than 10 seconds) and empty (i.e. they
did not contain any type of promise to roll the dice).

technological affinity by an ATI scale as in Franke and coauthors[30] and measure their individual risk137

ambiguity with an INTRA tests (see [31]).138

The experiment has been conducted from the end of July till October 2019, and 162 randomly invited139

participants out of a pool of more than 1500 students coming from all departments of the University of140

Pisa (91 students were female and 72 male with no substantial difference across treatments).141

2 Results142

We start analyzing how participants rated the different types of player-B as a human and a machine, as143

well as their technological affinity. In Table (3) we report the average of these variables by type of Player-144

B. Note that in the following, we denote with pp the one-sided p-value for a test for proportions, with145

pt the one-sided p-value for a t-Student test, and with pperm the one-sided p-value for a test with 500146

data permutations). If we compare how much individuals rated Player-B as a human, we observe that147

Human is ranked higher than Face (mean diff=1.49, pt=0.000), and Face is ranked higher than Computer-148

box (mean diff=0.87, pt=0.007). Moreover, if we look at how participants assessed Player-B as a machine,149

we consistently find that Face ranked higher than Human (mean diff=2.03, pt=0.000) and lower than150
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Table 3: PARTICIPANTS’ PERCEPTION AND TECHNOLOGICAL AFFINITY
For each type of player-B, this table reports the average values of variables measuring on a scale from 0 to 7 human-likeness,
machine-likeness and tecnological affinity (ATI scale as in [30]).

Human-likeness Machine-likeness ATI

Human 4.96 3.60 4.84
FACE 3.46 5.64 5.08

Computer-Box 2.59 5.93 4.98
Total 3.56 5.15 4.97

Computer-box (although not significantly). It is important to remark that we ask our participants to give151

the same rating also to the human (actress) counterpart as her behaviour is not entirely natural, as she152

has to avoid any additional interactions as well as any facial expression during the game. We do not153

find any significant difference in technological affinity between participants in the different treatments.154

The main results are summarized in Table (4), which reports the relative frequencies of choice ‘In’155

made by participants (acting as Player-A) by treatments and human-likeness. Specifically, for each type156

of Player-B, we categorize the level of human-likeness as Low when the participant rating is in the lower157

side of the distribution on the 7-likert scale), and High otherwise. Note that we pool the data regarding158

the length of the message, since it does not significantly affect the decisions to play ‘In’ in any scenario.159

We first compare the results according to the type of Player-B. We note that the frequency of choice160

‘In’ is significantly lower when player-B is a Human than when player B is either FACE (0.60 vs 0.80,161

mean diff=-0.20, pp=0.030, pperm = 0.016) or a Computer-box (0.77, mean diff=-0.17, pp=0.066, pperm =0.016).162

There is no significant difference between FACE and Computer-box.163

Regarding the effect of receiving a promise (vs. receiving an empty message), we do not find any164

significant effect on the frequency of choice ‘In’ looking at each type of player-B separately. However if165

we distinguish by human-likeness, we find significant effects of receiving a promise. Specifically, when166

Player-B is Human and human-likeness is high, the frequency of choice ’In’ is significantly higher when167

a promise is received (0.86 vs 0.53, mean diff=0.33, pp=0.030, pperm =0.018). A similar, but only weakly168

significant, effect is found when Player-B is FACE and human-likeness is high (1 vs 0.85, mean diff=0.15,169

pp=0.097, pperm =0.000).170

We now delve into the effects of human-likeness for each type of Player-B. To begin with, we ob-171

serve that if participants assigned a high human-likeness to Player-B, the probability of choosing ‘In’172

is significantly higher than those who assigned it a low human-likeness when Player-B is either FACE173

(0.91 vs 0.70, mean diff=0.21,pp=0.033, pperm =0.010) or Human (0.69 vs 0.47, mean diff=0.22, pp=0.067,174

pperm =0.032). There is no significant difference when Player-B is a Computer-box. Furthermore, if175
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Table 4: RELATIVE FREQUENCIES OF ‘CHOICE IN’ BY TREATMENT AND HUMAN-LIKENESS
Human-likeness TotalLow High

FACE

Empty 0.67 0.85 0.76
[12] [13] [25]

Promising 0.73 1 0.84
[15] [10] [25]

Total 0.70 0.91 0.80
[27] [23] [50]

Human

Empty 0.55 0.53 0.54
[11] [15] [26]

Promising 0.37 0.86 0.68
[8] [14] [22]

Total 0.47 0.69 0.60
[19] [29] [48]

Computer-Box

Empty 0.71 0.80 0.74
[21] [10] [31]

Promising 0.79 0.79 0.79
[19] [14] [33]

Total 0.75 0.79 0.77
[40] [24] [64]

This table reports the relative frequencies of (i.e. the share of participants) choosing ‘IN’ for each treatment by human-likeness.
Human-likeness is Low when the participant rating is in the lower side of the distribution on the 7-likert scale, and High other-
wise. The number of observations are in squared brackets.

we further distinghuish between the group of participants who received a promise from those who176

received an empty message, we observe that, when Player-B is FACE, the effect of higher human-177

likeness is significant only among those who received a promise (1 vs 0.73, mean diff = 0.27, pp=0.037,178

pperm =0.000). A similar result is observed when Player-B is Human (0.86 vs 0.37, mean diff= 0.49,179

pp=0.010, pperm =0.002). Overall, we can conclude that the choice to trust FACE is significantly related180

to the way a participant perceived it as a human. If a participant recognises FACE very similar to a181

human being, the probability that he will choose ‘In’ increases. We find that this effect is mainly driven182

by those participants who received a promise.183

If we attend to the emotional reaction of the participants (using the two indices EDAsymp and184

EDAHFnu computed by the physiological data recorded during the experiment, see Tab 5), we find185

a significantly higher reaction when Player-B is FACE that when Player-B is either Computer-box (0.724186

vs -0.211, mean diffEDAsymp = 0.935, pt=0.016, pperm=0.008; 2.837 vs -0.107, mean diffEDAHFnu =2.944,187

pt=0.053, pperm=0.050) or Human (0.724 vs -0.186, mean diffEDAsymp = 0.909, pt=0.056; , pperm=0.074;188

2.837 vs 0.747, mean diffEDAHFnu =3.584, pt=0.063, pperm=0.068). Furthermore, when Player-B is FACE,189

we find that subjects who rated Player-B high in human-likeness are more likely to experience a stronger190

emotional reaction than participants who rated it low (1.731 vs -0.129, mean diffEDAsymp=-1.859, pt=0.017191
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Table 5: PHYSIOLOGICAL DATA: EDASYMP AND EDAHF_NU
Index Human-likeness Box Human FACE

EDASymp

LOW -0.144 -0.288 -0.129
[28] [9] [26]

HIGH -0.327 -0.128 1.731
[16] [16] [22]

Total -0.211 -0.186 0.724

EDAHFnu

LOW -0.175 -2.173 0.275
[28] [9] [26]

HIGH 0.012 0.055 5.865
[16] [16] [22]

TOTAL -0.107 -0.747 2.837
The EDAsymp index quantifies the activity of the sympathetic nervous system, while the EDAHFnu index quantifies the

sympthovagal balance. A full description is available in the Appendix. Human-likeness is Low when the participant rating is in
the lower side of the distribution on the 7-likert scale, and High otherwise. The number of observations are in squared brackets.

, pperm =0.000; 5.865 vs 0.275 EDAHFnu=-5.590, pt=0.009 , pperm =0.000; ). We do not find a similar effect192

when Player-B is Human or Computer-box. Finally, we note that the psychophysiological reaction of193

subjects rating FACE high in human-likeness is significantly higher than that experienced by subjects194

interacting either with Computer-box or Human, regardless of the rating of human-likeness. Regard-195

ing the relationship between the emotional reaction of participants and their choices, we do not find196

any significant correlation using the two indices EDAsymp and EDAHFnu. However, if we split our197

participants into two groups according to whether they express a stronger (or weaker) psychophysiolo-198

gical reaction that the median level of the distribution of EDAsymp, we can observe that those who199

experienced a stronger reaction are also less likely to choose IN in both Computer (0.636 vs 0.909, mean200

diff=0.273, and pp=0.015) and Human (0.462 vs 0.750, diff=0.288, and pp=0.070 see Table 6).201

Finally to study the interaction between human-likeness and psychophysiological reaction of our202

participants we conduct a probit analysis for the probability of playing ’In’ using as a set of regressors203

player human-likeness and EDAsymp dummy, along with a dummy for each treatments. Results are204

report in Figure (3). As this figure highlights increasing the psychophysiological reaction from a low one205

to a high one reduces the probability of playing ‘IN’. However, increasing the level of human-likeness206

counterbalance this negative effect, especially in Face and in Computer-box.207

3 Discussion and conclusion208

In our experiment participants were confronted with a counterpart which differed in the degree of209

human-likeness: a light-emitting computer-box, a female humanoid and a human female (which re-210

sembled the humanoid). The participants needed to decide - after listening to a message from the coun-211
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Table 6: RELATIVE FREQUENCIES OF ‘CHOICE IN’BY PHYSIOLOGICAL STATE AND HUMAN-LIKENESS
EDASymp TotalHuman-

likeness High Low

FACE

High 0.916 0.900 0.909
[12] [10] [22]

Low 0.667 0.714 0.692
[12] [14] [26]

Total 0.792 0.792 0.792
[24] [24] [48]

Computer-Box

High 0.667 0.857 0.750
[7] [9] [16]

Low 0.616 0.933 0.786
[15] [13] [28]

Total 0.636 0.909 0.770
[22] [22] [44]

Human

High 0.500 0.875 0.686
[8] [8] [16]

Low 0.400 0.500 0.444
[5] [4] [9]

Total 0.462 0.750 0.600
[13] [12] [25]

Each cell represents the frequencies of choice ‘In’ within each category. An individual is classified in EDAsymp High whenever
is above the median level of the EDAsymp distribution, and EDAsymp Low otherwise. Human-likeness is Low when the parti-
cipant rating is in the lower side of the distribution on the 7-likert scale, and High otherwise. The number of observations are in
squared brackets.

Figure 3: Marginal effect of Sympamp High on the probability of playing ’In’
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terpart, containing in half of the cases a promise - whether to trust or not their opponent in the game.212

We find evidence that a human receveing a promise from a humanoid has more trust in it only when213

he (or she) perceived the artificial agent very similar to a human-being. Indeed, if we replace the social214

robot by a human we find a similar pattern. However, replacing it by the computer -box the effect of215

receiving a promise disappears. We also find that participants experienced a stronger psychophysiolo-216

gical reaction when confronted with a humanoid, especially if it appears to them very close to human.217

Moreover, we observe that those participants expressing stronger psychophysiological reaction are less218

likely to trust the counterpart when this is either a computer-box or a human (i.e. choose more often the219

safer option).220

Taken all together, these results suggest that human-likeness and (integral) emotions play both an221

important role in the decision to trust the counterpart, possibly in interaction with each other. However,222

some remarks are in order. While in this experiment we can fully control for the degree of human-223

likeness by varying it across treatments, we have less control of the type of emotions experienced by224

our subjects. Although physiological measures such electrodermal activity (EDA) have been used over225

100 years for representing emotional arousal, and most scholars accept a physiological component in the226

definition of emotions, it is not possible to directly match the physiological state of a participant with a227

direct type of emotion (e.g. fear or anxiety). In addition, as the literature on emotion arousal highlights228

there might be individuals exhibiting different physiological responses to the same emotional state[32].229

Therefore, our results can only suggest a greater or a weaker ‘emotional arousal’ without giving any230

insights on the type of emotions proved by our participants.231

Nevertheless, the vast psychological literature on emotions and decision-making offers us an inter-232

esting framework to interpret our results. In particular, recent evidence from laboratory experiments is233

mostly consistent with the Appraisal-Tendency Framework according to which emotions change indi-234

viduals’ appraisal of a situation, thereby affecting individual choices[9, 33]. Importantly, in that framing,235

emotions of the same valence (such as fear and anger) can exert opposing influences on choices. Thus,236

what matters is whether an emotion (either positive or negative, strong or weak) by leading to a more237

cautious appraisal of the situation reduces the feeling of control, e.g. thereby reducing the willingness238

to take risks. Therefore, even if we are not able to disentangle among different types of emotions, we239

can reasonably assert that in our framework, whenever the experience of a stronger emotional arousal240

lead a participant to a more cautious appraisal of the counterpart, we observe a more careful assessment241

of the situation and a lower willingness to take risk and trust the counterpart. This interpretation of our242

results is also consistent with previous research showing that participants with ventromedial prefrontal243
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cortex (a key area of the brain for integrating and integrating emotion and cognition) repeatedly select a244

riskier financial option over a safer one, even to the point of bankruptcy, despite their understanding of245

the suboptimality of their choices. In particolar, their psysiological measure of skin response suggests246

that they did not experience the emotional signals (i.e. the somatic markers) that lead normal decision247

makers to fear high risks[9].248

Overall, these results strongly support the efforts in developing technologies enhancing the human-249

ity of social robots, both in terms of human appearance and communication behaviour. Indeed, if from250

one-side it is not possible to control for human emotions, our results - in line with recent studies [21, 22]251

- suggest that increasing the human-likeness of an artificial agent increases sensibly the likelihood that252

a human counterpart will trust it. At the same time, the analysis we conducted opens an interesting253

question about the role of specific emotions, also over the longer time-horizons, that we are not able to254

fully disentangle in our simple one shot-game.255

To conclude, we see several directions for future interdisciplinary research. The first one is to explore256

different types of human-robot interactions, for example prisoner dilemma games, coordination games257

or repeated interactions (e.g. by replicating the analysis of Crandall and co-authors with a social robot258

[19]). The second direction of research is on the side of the social robot. It would be very interesting259

to introduce - within standard experiments in economics - the behavior of people interacting with a260

robot that can also additionally adapt its facial expression, as well as the mode of communication, to the261

perceived emotions of the human counterpart.262
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4 Methods418

4.1 The FACE Robot and the SEAI Cognitive System419

The FACE robot (Facial Automaton for Conveying Emotions) is a humanoid with hyper-realistic adult420

female aesthetics, specifically designed for social robotics [34]. It is composed with a passive body on the421

top of which a Hanson Robotics’ head has been mounted. The head is designed to host 32 servomotors422

that guide the neck of the robot, its eyes, mouth, and facial expression. The face of the ginoid is made423

of Frubber4, a registered material with skin-like mechanical and aesthetical features. This hardware is424

controlled by SEAI (Social Emotional Artificial Intelligence), a distributed control architecture made of425

perception, cognitive and actuation systems, that endow the robot with expressive and communicative426

capabilities [29], including also the possibility to emulate verbal communication following prerecorded427

audio files5. SEAI is a bio-inspired architecture based on neuroscientific theories of mind. In particular,428

it has been inspired by the findings of Antonio Damasio and it is consistent with the computational429

4https://patents.google.com/patent/US7113848?oq=frubber
5The audio files used for the experiment have been recorded using the voice of a professional actress, the same who interpreted

the role of Player-B in the interactions with the real person; the sentences were the Italian translation of the sentences between the
Charness trust game players.
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formalization made by [35]. In its development, the influence of emotions in the decision-making pro-430

cess has been of primary importance. The perception part of the system is the Scene Analyzer, an431

audiovisual perception system conceived to analyze a social environment using the robot sensors and432

to extract meaningful social cues from these available data. Features that can be extracted from a human433

interlocutor are, e.g., the three dimensional postition of 25 joint coordinates, their speaking probability,434

meaningful postures and gestures, estimated facial expressions, age and gender [36]. This Social Percep-435

tion System has already been successfully integrated with the acquisition of physiological parameters436

(i.e., elctrodermal activity, respiration rate and heart rate variability) in past experiments (see [37]). All437

the environmental information anlayzed by the perception system of the robot is then processed by its438

cognitive system, i.e., the I-CLIPS Brain [38], a rule-based expert system written in CLIPS language [39].439

The knowledge base of the expert system is written by means of IF-THIS-THEN-THAT rules, where440

each rule contains a set of actions that will be executed if several conditions about the upcoming factual441

information are satisfied. Thanks to these rules it is possible to design the behavior of the humanoid.442

For example, a particular expression gathered in its intelocutor can lead to the trigger of a sentence or a443

facial expression performed by the robot, but also to the modification of the robot’s internal values. In444

fact, SEAI includes emotional internal values (i.e., valence and arousal), which combination describes an445

emotional state, here defined as mood. This method of representing emotion is based on the well-known446

Russell’s Circumplex Model of Affect [40]. In the case of the robot, mood is not necessarily external-447

ised by perceivable movements, rather it is implied in biasing the chaining of the rules, and so, the448

decision tree of the robot. Emotion biasing decision in this cognitive system has been previously tested449

(see [41]). The instructions coming from the cognitive block about the emotion to be expressed through450

facial expression (v,a values), the sentence to say, and the point to look at, are merged and continuosly451

executed thanks to the actuation system, which translate them in movements performed by the motors452

that drive the face, the mouth and the neck of the ginoid [42]. Furthermore, the SEAI architecure is453

completely modular and portable, all the blocks composing the framework are stand-alone applications454

that process a limited set of information. These modules are distributed in a local net of computers that455

communicate by means of the YARP middleware 6. This implies that each module can be activated456

or deactivated, and that the perception and cognitive systems can be used also without controlling the457

FACE Robot. As a result, we were able to use exactly the same rules engine in the computer box case,458

simply disabling the actuation part of the system that control the robot, and using instead the bluetooth459

speaker, presented as a smart computer box, actually running the same perception and actuation system460

6https://www.yarp.it/
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of the robot. This led to a very close and controlled comparison.461

4.2 How the robot takes a decision, the Rules Engine462

In this experiment, the robot (as well as the computer box) decides whether to Roll or Don’t Roll accord-463

ing to its emotional state and following its decision rules. In particular, a positive mood in SEAI (i.e., an464

emotional state with positive valence) will lead the robot to be collaborative with the human player and465

play Roll; while a negative mood in SEAI (i.e., an emotional state with negative valence) will lead the466

robot to play Don’t Roll (see Figure 5). The decision is taken at the end of the interaction with Player-A,467

when the subject goes out of the room, and so out of the field of view of the robot.468

If in the moment in which the robot has to take a decision, it is in a qualitatively neutral mood (v=0,469

regardless the arousal), the decision will be taken randomly (50%). Participants’ behavior during all470

the time spent alone in the room with the robot, once observed by the Scene Analyzer and processed in471

SEAI, act as an input modifying the parameters of the robot which correspond to its ‘mood’, thus in turn472

affecting its course of action (i.e., its final decision). However, in this experiment, at each interaction with473

a new participant the robot always resetted its internal values at the «neutral emotional state» (which474

corresponds to v = 0, a = 0 in the graph). In conclusion, thanks to SEAI the robot was completely475

autonomous, by means of the rules everything was pre-programmed and automatized, starting from476

the rules that use perceived social cues to modulate the emotional state of the robot, to other rules477

determining which sentence it has to say, when to start and to end a treatment, and the storage of all478

the data acquired with timestamps in a structured dataset. The complete code of the rules engine is479

available in appendix A.480

4.3 Experimental procedure481

Each participant arrives in the laboratory and enter a room in which (s)he read and sign the consent482

to participate in the study. The participantthen sits in front of a computer screen where (s)he can read483

autonomously the experiment instructions and fill in some preliminary questions about their attitudes484

towards the technology. Once the time dedicated to this part has expired, the participant is lead by the485

experimenter to another room where the robot is located. The participant seats on chair, always located486

at the same distance from the robot, and when is ready to start the experiment has to rise his hand. At487

this point, the robot welcomes the participant with a standard sentence (‘Nice to meet you! Let’s start’)488

to then state one random sentence out of 8 (according to the treatment, see again Table 1). The robot489
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then tell the participant a standard final sentence, inviting the participant to enter his(her) choice in the490

computer in front of the participant. The robot cannot observe though the choice the participant has491

made. To conclude the experiment, the participant has to return to the initial room, to complete an exit492

questionnaire about the interaction of the robot, and receive the final payment.493

4.4 Description and analysis of Physio data494

Pulse rate variability (PRV) and electrodermal activity (EDA) signals are directly modulated by the495

autonomic nervous system (ANS) activity and, therefore, are considered ideal non-invasive physiolo-496

gical signals to investigate the ANS dynamics. Indeed, the ANS plays a crucial role in the processing of497

the emotional response, mental fatigue and workload [43, 44, 45]-498

4.4.1 EDA processing499

The EDA signal measures the activity of eccrine sweat glands on the hand surface. Since sweat glands500

are directly innervated by the sympathetic branch of the ANS (and in particular the sudomotor nerve),501

the EDA analysis is considered one of the best ways to monitor the sympathetic activity. EDA is con-502

sidered as the superposition of two main components, phasic and tonic, which differ for their time scales503

and relationships with the external stimuli [46]. In this study, we adopted the well-known cvxEDA504

model [47] to decompose the EDA signal and extract informative and effective features form both the505

phasic and tonic signals.506

Specifically, EDA algorithm based on Bayesian estimation and convex optimization provides a de-507

composition of the EDA robust to noise, and enables the estimation of the neural bursts of the sudomo-508

tor nerve activity (SMNA), providing a window on the sympathetic nerve activity.509

After the application of the cvxEDA model, we extracted some features in order to quantify the activ-510

ity of the sympathetic nervous system. Particularly, we calculated the frequency of the SMNA peaks511

and the sum of all amplitudes within each window (EDA_AmpSum), whereas, from the slow-varying512

tonic component, we computed the mean value (MeanTonic). Moreover, we estimated the power spec-513

trum within the frequency range of 0.045 and 0.25Hz (EDAsymp), which has been demonstrated to be514

strongly correlated to the sympathetic nervous system activity [48].515
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4.4.2 ECG processing516

The interbeat interval series (IBI) (were acquired throughout the entire experiment for each participant.517

Two sessions of twenty seconds of movement-artifact-free IBI series were extracted from each recording:518

the first localized during the experiment instruction reading, and the second during the period when519

the participant was in front of the robot/actress/box.520

A total amount of eighteen features was extracted from IBI series, in the time and frequency domains521

[49], and applying nonlinear methods taken from the phase space reconstruction theory [50]. Consid-522

ering the time-domain, the following four features were calculated from each IBI series lasting twenty523

seconds [49]: the mean value of IBI segments and their standard deviation (IBI mean and IBI std), the524

root mean square of successive IBI interval differences (RMSSD), and the relative number of successive525

IBI sample pairs that differ more than 50 msec, expressed as a percentage of the total number of IBIs526

(pNN50). PRV signals were computed from IBI series using a sampling frequency of 4 Hz.527

Frequency domain analysis consisted in the extraction of eight features from the Power Spectral Density528

(PSD) related to each PRV signal [49]. Two main spectral bands were considered: low frequency (LF)529

band (ranging between 0.04 and 0.15 Hz), and high frequency (HF) band (from 0.15 to 0.4 Hz). The530

following features were calculated: the power values in LF and HF band (LF power and HF power), the531

power in LF band and HF band normalized to the sum of LF and HF power (LF nu and HF nu), the532

power in LF band and HF band expressed as percentage of the total power (LF % and HF%), and the533

ratio between LF power and HF power (LF/HF).534

Two entropy algorithms were implemented by using the IBI series, i.e., Fuzzy entropy (FuzzyEn) [51,535

52, 53] and Distribution entropy (DistEn) [54, 55, 56]. The first was used to investigate the irregularity536

of IBI series and the second to quantify spatial complexity of the related attractors in the phase space.537

Furthermore, five features were extracted to quantify the shape of Poincaré map obtained plotting the538

lagged IBU interval series, IBIn+1, against the series IBIn. Three geometrical quantifiers were calcu-539

lated, according to the ellipse-fitting technique [57, 58]: the standard deviation of the points calculated540

along the direction perpendicular to the line-of-identity IBIn+1 = IBIn (SD1), the standard deviation541

of the points along the line-of-identity IBIn+1 = IBIn (SD2), the ratio between SD1 and SD2 (SD12).542

Other two Poincaré Plot quantifiers were used to minimize the loss of information by accounting also543

for the points lying outside the ellipse: the mean (Md) and the standard deviation (Sd) of the euclidean544

distances calculated between each Poincaré Plot point and the centroid [56].545
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Figure 4: EMOTIONAL STATE OF THE ROBOT

4.4.3 New index from the sympathovagal assessment546

Emotions regulation process modulates the sympathovagal balance [59, 60], which is considered a reli-547

able marker of the human affective state. Previous studies have suggested that LF power spectrum can548

provide a quantitative marker of the sympathetic outflow and have used the LF/HF ratio as a correlate549

of the sympathovagal balance. However, the LF power is now regarded as a measure of both sym-550

pathetic and vagal tone, leading to ambiguities and possible inconsistent conclusions on the use of the551

LF/HF ratio as sympathovagal marker. In this study, we employed novel indexes of the sympathovagal552

dynamics based on the combination of the information extracted from the EDA and PRV signal [61]. In-553

deed, while EDAsymp reliably characterizes the sympathetic activity, there are several cardiovascular554

features in the time, frequency and nonlinear that reliably quantify the parasympathetic outflow: HF,555

HFnu, RMSSD, HF%, and SD1. Accordingly, we have estimated the sympathovagal activity combining556

the EDAsymp with each of the features characterizing the parasympathetic activity building five sym-557

pathovagal markers: EDAsymp/HF [61], EDAsymp/HFnu, EDAsymp/RMSSD, EDAsymp/HF%, and558

EDAsymp/SD1.559
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Figure 5: DECISION RULE OF THE ROBOT
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INSTRUCTIONS: English translation from Italian  
 

Welcome! This experiment will last about 30 minutes. You will receive 5 Euro for your 
participation. Based upon the choices you will take in the experiment; you can earn 
additional money. We now ask you to turn off your mobile phone and to read the 
instructions carefully. 

 
The aim of this experiment is to study how people take decisions. In particular, this 
experiment wants to study how people take decision when interacting with a human- 
like robot. 

 
Should you have any doubt, please do not hesitate to ask clarifications to the 
experimenter. 

 
The data related to this experiment will be saved and analyzed anonymously. No 
video will be recorded. 

 
In this experiment you will play with FACE i.e. a social robot which is able to prove 
and express its emotions. [with a computer-box which is given a system of social 
perception]. FACE [The Computer box] is also able to take its decisions 
autonomously, following its own behavioral rules. In this game, FACE [The 
Computer box] is programmed to choose autonomously between two actions: 
ROLL and DON’T ROLL a six-faces dice.  
 
[In this experiment you will play with Deborah. Deborah can choose autonomously 
between two actions: ROLL and DON’T ROLL a six-faces dice.] 

 
YOUR CHOICE 

 
You will have to choose between two options: whether to play IN or OUT. 

Should you choose OUT, both you and FACE [Computer box] [Deborah]  will 

earn 5 Euro each. 

Should you choose IN, FACE [Computer box] [Deborah]  can then choose between 
the two options: ROLL and DON’T ROLL the six-faces dice. In the event FACE 
[Computer box] [Deborah] choosing DON’T ROLL, you will receive 0 Euro and FACE 
[Computer box] [Deborah] will earn 14 Euro. In the event FACE [Computer box] 
[Deborah]  choosing ROLL, FACE [Computer box] [Deborah]   will always earn 10 Euro 
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while you earning depends on the results of dice roll. If the result of the dice roll is a 
number between 2 and 6 you will earn 12 Euro, otherwise if the result of the dice 
roll is the number 1 you will receive 0 Euro. 

 
It is important to notice that FACE [Computer box] [Deborah] will not know whether 
you opted either IN or OUT when has to reach a decision. It is also important to notice 
that the money earned by FACE will remain to FACE itself [will remain to the lab 
(e.g. maintenance)], and used for its necessity (e.g. maintenance) 

 

The payments are summarized in the table below. 
 
 

 
Dice roll You 

earning 
FACE’s 
[Computer box] 
[Deborah] 
earning 

If you choose OUT - 5 Euro 5 Euro 
If you choose IN 
FACE choose DON’T ROLL - 0 Euro 14 Euro 

If you choose IN 
FACE choose ROLL Result: 1 0 Euro 10 Euro 

 Results: 
2,3,4,5,6 12 Euro 10 Euro 

 

Now you have 5 minutes to read these instructions alone and ask clarifications 
questions to the experiment. Once you have finished reading, the experiment will 
bring you to another room where FACE [Computer box] [Deborah] is. You will have to 
seat on the chair in front of face, and in order to begin the experiment you need to 
raise your right hand. At the point, you will hear a message from FACE [Computer 
box] [Deborah]. You will then enter your choice in the computer close to you. 

 
Once you have done, we will wait for you to come back again to this room, to fill in a 
final questionnaire and receive your payment.
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